**Problem and solution**

In the following attracted paper two problems are solved.
Both of them depend on the basics of definition of effective index.

There are helpful in calculating the refractive index of one
medium with the other medium and in calculating the velocity of the lighting a
medium basing on the value of refractive index.

We can define velocity of the light in any medium as ratio of
velocity of the light in the vacuum to the refractive index of the medium.

Again we are going to solve to more problems basing on the
concept of refractive index and its definition.

Being the light travelling in the form of a straight line
with can write the displacement is the product of velocity and time.

In the place of the velocity of the medium we can write the
ratio of the last of the light is a vacuum to the refractive index of the
medium.

In solving the second problem that is attached, we are going
to follow a little bit different approach. It is given in the problem that in two
different media with two different thickness number of the waves are same. We
know that each wave consists of a particular lent is called wavelength. As the
wave spreads over the entire thickness, we can say the total thickness of
medium is the product of certain number
of the waves multiplied by the wavelength.

**Problem and solution**

A Ray of light entering from air to glass is partly reflected
and partly refracted. If the reflected and the reflected light rays are at
right angles to each other, it is the angle of reflection?

We can solve the problem as shown below. We are simply taking
the basic mathematics and the definition of the refractive index into
consideration while we are solving the problem.

The above attached paper consists of another problem also. It
is based on angle of deviation. When there is no change of the medium, light
will continue in its path without any deviation. When there is a change of the
medium it will refract. As angle of incidence is different from angle of
refraction and there is a change in the path of the light Ray. The difference
between angle of incidence to angle of refraction is called angle of deviation.
Again by applying the Snell’s law, we can solve the above problem.

**Related Posts**

## No comments:

## Post a Comment